Optimization of Analog Circuit Fault Diagnosis Parameters based on SVM and Genetic Algorithm

نویسندگان

  • Tang Jing
  • Hu YuNan
  • Xiao ZhiCai
چکیده

Currently, Diagnostic parameters of analog circuits fault diagnosis based on SVM are adjusted in accordance with the principle to determine the global optimum or by trial. Parameter adjustment is not considered practical diagnostic system diagnostic requirements. It can not be part of various diagnostic parameters simultaneously adjust and optimize. The results are not satisfactory. The paper presents a model of fitness function for genetic algorithm parameter optimization,It will convert the actual circuit diagnosis requires fitness indicators in the evaluation results of analog circuit fault diagnosis; In this paper, a circuit diagnosis framework for closed-loop model parameters optimization based on genetic algorithm is presented. It's all part of the system parameters to optimize simultaneously, and analyzes the convergence of the algorithm parameter search. By example the closed-loop fault diagnosis diagnosis parameter optimization framework developed under the parameters of the various parts of the impact on decision-making. This article describes the establishment of closed-loop fault diagnosis model parameter optimization framework and the search algorithm is effective and practical.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analog Circuit Soft Fault Diagnosis based on PCA and PSO-SVM

Regarding to the complexity and diversity of analog circuit fault, a principal component analysis(PCA) and particle swarm optimization(PSO) support vector machine(SVM) analog circuit fault diagnosis method is proposed. It uses principal component analysis and data normalization as preprocessing, then reduced dimension fault feature is putted into support vector machine to diagnosis, and particl...

متن کامل

A Novel Approach for Diagnosis of Analog Circuit Fault by Using GMKL-SVM and PSO

This paper presents a novel analog circuit fault diagnosis approach using generalized multiple kernel learningsupport vector machine (GMKL-SVM) method and particle swarm optimization (PSO) algorithm. First, the wavelet coefficients’ energies of impulse responses are generated as features. Then, a diagnosis model is constructed by using GMKL-SVM method based on features. Meanwhile, the PSO algor...

متن کامل

Two-level Structure for Analog Circuit Fault Diagnosis Using Improved Dagsvm as Classifier

Fault diagnosis of analog circuit is of essential importance for guaranteeing the reliability and maintainability of electronic systems. Taking into account the requirements and characteristics of analog circuit fault diagnosis, two-level diagnostic structure for analog circuit is proposed in this paper. Analog circuit fault diagnosis can be regarded as a pattern recognition issue and addressed...

متن کامل

Fault Diagnosis in a Yeast Fermentation Bioreactor by Genetic Fuzzy System

In this paper, the fuzzy system has been used for fault detection and diagnosis of a yeast fermentation bioreactor based on measurements corrupted by noise. In one case, parameters of membership functions are selected in a conventional manner. In another case, using certainty factors between normal and faulty conditions the optimal values of these parameters have been obtained through the g...

متن کامل

Parameters Optimization of SVM Based on Improved FOA and Its Application in Fault Diagnosis

In most cases, fault diagnosis is essentially a pattern recognition problem and support vector machine (SVM) provides a new solution for the diagnosis problem of systems in which the fault samples are few. However, the parameters selection in SVM has significant influence on the diagnosis performance. In this paper, improved fruit fly optimization algorithm (IFOA), which is basically the standa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012